Subject Name: Compiler Design
Subject Code: CE701-N

Teaching Scheme (Credits and Hours)

Teaching scheme Evaluation Scheme
Total Mid Sem
L T P Total Theory CIA | Pract. | Total
Credit Exam
Hrs | Hrs | Hrs Hrs Hrs | Marks | Marks Marks | Marks | Marks
04 00 02 06 5 3 70 30 20 30 150

Learning Objectives:

The objective of this course is to introduce students to the following concepts underlying the
design and implementation of compilers.

e Describe the steps and algorithms used by compilers.

e Recognize the underlying formal models such as finite state automata, push-down
automata and their connection to language definition through regular expressions and
grammars.

e Discuss the effectiveness of optimization.

e Explain the impact of a separate compilation facility and the existence of program
libraries on the compilation process.

Outline of the Course:

Sr. No Title of the Unit Minimum
Hours
1 Introduction to Compiling 4
2 Lexical Analyzer 6
3 Parsing Theory
e Syntax Analyzer 14
e Syntax Directed Translation
4 Error Recovery 4
5 Type Checking 4
6 Run Time Environments 5
7 Intermediate Code Generation 5
8 Code Generation 5
9 Code Optimization 7
10 | Introduction to Language processors and system software 10

Total hours (Theory): 64
Total hours (Practical): 32
Total hours: 96

Detailed Syllabus:

Sr.
No

Topic

Lecture
Hours

Weight
age(%)

1

Introduction to Compiling

Overview of the Translation Process- A Simple Compiler,
Difference between interpreter, assembler and compiler

Overview and use of linker and loader ,
types of Compiler,

Analysis of the Source Program,

The Phases of a Compiler,

Cousins of the Compiler, The Grouping of Phases,

Front-end and Back-end of compiler,
pass structure
A simple one-pass compiler: overview

04

06

Lexical Analyzer

Introduction to Lexical Analyzer,

Input Buffering,

Specification of Tokens,

Recognition of Tokens,

A Language for Specifying Lexical Analyzers,
Finite Automata From a Regular Expression,
Design of a Lexical Analyzer Generator,
Optimization of DFA

06

09

Parsing Theory- Syntax Analyzer

The role of a parser

Context free grammars

Top Down and Bottom up Parsing Algorithms,
Top-Down Parsing,

Bottom-Up Parsing,

Operator-Precedence Parsing,

LR Parsers,

Using Ambiguous Grammars,

Parser Generators,

Automatic Generation of Parsers.

10

16

Parsing Theory- Syntax Directed Translation
eSyntax-Directed Definitions,

eConstruction of Syntax Trees,

eBottom-Up Evaluation of S-Attributed Definitions,
o] -Attributed Definitions,

eSyntax directed definitions and translation schemes

04

06

Error Recovery
e Error Detection & Recovery,
e Ad-Hoc and Systematic Methods

04

06

Type Checking
e Type systems

e Specification of a simple type checker
e Type conversions

04

06

Run Time Environments
e Source Language Issues,

e Storage Organization,

e Storage-Allocation Strategies,

e Parameter Passing,

e Symbol Tables,

e Language Facilities for Dynamic Storage Allocation,
e Dynamic Storage Allocation Techniques.

05

08

Intermediate Code Generation
e Different Intermediate Forms,

e Implementation of Three Address Code
e Intermediate code for all constructs of programming languages

(expressions, if-else, loops, switch case etc.)

05

08

Code Generation

Issues in the Design of a Code Generator

Basic Blocks and Flow Graphs

A Simple Code Generator

Register Allocation and Assignment

The DAG Representation of Basic Blocks

Peephole Optimization

Dynamic Programming Code-Generation Algorithm

05

08

Code Optimization
e Global Data Flow Analysis,

e A Few Selected Optimizations like Command Sub Expression
Removal, Loop Invariant Code Motion, Strength Reduction Etc.
e Optimization of basic blocks

07

11

10

Introduction to Language processors and system software

e Macros and Macro Processors:
Macro Definition and Call , Macro Expansion

e Assemblers: Elements of Assembly Language Programming,
A Simple Assembly Scheme ,Pass Structure of Assemblers,
Design of a Two Pass Assembler

e Software Tools for Program Development

e Editors

e System software: linker/loader

10

16

Total

64

100

Instructional Method and Pedagogy:

At the start of course, the course delivery pattern, prerequisite of the subject

will be discussed.

Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
Attendance is compulsory in lecture and laboratory which carries 10 marks in
overall evaluation.

One internal exam will be conducted as a part of internal theory evaluation.
Assignments based on the course content will be given to the students for each

unit and will be evaluated at regular interval evaluation.

Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in
the overall internal evaluation.

The course includes a laboratory, where students have an opportunity to

build an appreciation for the concepts being taught in lectures.

Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:

Understand how the design of a compiler requires most of the knowledge acquired
during their study.

Develop a firm and enlightened grasp of concepts learned earlier in their study like
higher level programming, assemblers, automata theory, and formal languages.

Apply the ideas, the techniques, and the knowledge acquired for the purpose of other
language processor design.

Working skills in theory and application of finite state machines, recursive descent,
production rules, parsing, and language semantics.

Know about the powerful compiler generation tools, which are useful to the other
non-compiler applications

Be able to compare various system software related to the given system
Be able to understand the concepts required to develop the system software

Reference Books:

Compilers, Principles, Techniques and Tools by A.V. Aho, R. Sethi and J.D.Ullman,
Pearson

D. M. Dhamdhere, “Systems Programming and Operating Systems”’, Second Revised
Edition, Tata McGraw-Hill, 1999.

Advanced compiler Design Implementation by Steven S. Muchnick

The Compiler Design handbook: Optimization and Machine Code Generation by Y. N.
Shrikant and Priti Shankar, Second Edition

Charles N. Fischer, Richard J. leBlanc, Jr.- Crafting a Compiler with C, Pearson
Education, 2008.

1.

(98]

List of Practical:

Sr.NO

Practical

Implement a C program to identify keywords and identifiers using finite
automata.

Implement a C program to identify whether the production is left recursive or
not and eliminate left recursion if it is applicable.

Implement a C program to remove left factoring.

Implementation of lex programs:

Write a lex program to identify numbers, words and other characters and
generate tokens for each.

Write a lex program to identify all occurrences of “LDRP” and replace it with
“COLLEGE”.

Write a lex program to display the length of each word.

Write a lex program to convert the lowercase first letter of the string to
upper case and upercase first letter of the string to lowercase.

Write a lex program to count the number of characters, words and lines in the
given input.

Write a lex program to add line numbers to every line of a input file.

Write a lex program that read the numbers and add 3 to the numbers if the
number is divisible by 7.

Write a lex program to remove empty lines.

Write a lex program to identify words followed by punctuation marks.

Write a lex program to display the comments from given input file. *

Write a lex program to identify all the lexemes from input file that follow the
given RE. Provide the RE and input file as command line arguments.

Write a lex program that will replace the word “Hello” with “Idrp” if the line
starts with the letter ‘a’ and with “college” if it starts with ‘b’.

Generate a lexer for C program.

Implementation of Yacc programs.

Write a Yacc program for desktop calculator with ambiguous grammar.

Write a Yacc program for desktop calculator with ambiguous grammar and
additional information.

Write a Yacc program for calculator with
unambiguous grammar.

Implement pass-I of a two pass assembler

