

Subject Name: Compiler Design

Subject Code: CE701-N

Teaching Scheme (Credits and Hours)

Teaching scheme

Total

Credit

Evaluation Scheme

L

T

P

Total Theory

Mid Sem

Exam
CIA

Pract.

Total

Hrs Hrs Hrs Hrs Hrs Marks Marks Marks Marks Marks

04 00 02 06 5 3 70 30 20 30 150

Learning Objectives:

The objective of this course is to introduce students to the following concepts underlying the
design and implementation of compilers.

 Describe the steps and algorithms used by compilers.
 Recognize the underlying formal models such as finite state automata, push-down

automata and their connection to language definition through regular expressions and
grammars.

 Discuss the effectiveness of optimization.
 Explain the impact of a separate compilation facility and the existence of program

libraries on the compilation process.
Outline of the Course:

Sr. No

Title of the Unit
Minimum

Hours
1 Introduction to Compiling 4
2 Lexical Analyzer 6
3 Parsing Theory

 Syntax Analyzer

 Syntax Directed Translation
14

4 Error Recovery 4
5 Type Checking 4
6 Run Time Environments 5

7 Intermediate Code Generation 5
8 Code Generation 5
9 Code Optimization 7
10 Introduction to Language processors and system software 10

Total hours (Theory): 64

Total hours (Practical): 32

Total hours: 96

Detailed Syllabus:

Sr.
No

Topic Lecture
Hours

Weight
age(%)

1 Introduction to Compiling
 Overview of the Translation Process- A Simple Compiler,

Difference between interpreter, assembler and compiler
 Overview and use of linker and loader ,
 types of Compiler,
 Analysis of the Source Program,
 The Phases of a Compiler,
 Cousins of the Compiler, The Grouping of Phases,
 Front-end and Back-end of compiler,
 pass structure
 A simple one-pass compiler: overview

04

06

2 Lexical Analyzer
 Introduction to Lexical Analyzer,
 Input Buffering,
 Specification of Tokens,
 Recognition of Tokens,
 A Language for Specifying Lexical Analyzers,
 Finite Automata From a Regular Expression,
 Design of a Lexical Analyzer Generator,
 Optimization of DFA

06

09

3 Parsing Theory- Syntax Analyzer
 The role of a parser
 Context free grammars
 Top Down and Bottom up Parsing Algorithms,
 Top-Down Parsing,
 Bottom-Up Parsing,
 Operator-Precedence Parsing,
 LR Parsers,
 Using Ambiguous Grammars,
 Parser Generators,
 Automatic Generation of Parsers.

10

16

 Parsing Theory- Syntax Directed Translation
Syntax-Directed Definitions,

Construction of Syntax Trees,

Bottom-Up Evaluation of S-Attributed Definitions,

L-Attributed Definitions,

Syntax directed definitions and translation schemes

04

06

4 Error Recovery
 Error Detection & Recovery,
 Ad-Hoc and Systematic Methods

04 06

5 Type Checking
 Type systems

 Specification of a simple type checker

 Type conversions

04

06

6 Run Time Environments
 Source Language Issues,

 Storage Organization,

 Storage-Allocation Strategies,

 Parameter Passing,
 Symbol Tables,

 Language Facilities for Dynamic Storage Allocation,

 Dynamic Storage Allocation Techniques.

05

08

7 Intermediate Code Generation
 Different Intermediate Forms,
 Implementation of Three Address Code
 Intermediate code for all constructs of programming languages

(expressions, if-else, loops, switch case etc.)

05

08

8 Code Generation
 Issues in the Design of a Code Generator
 Basic Blocks and Flow Graphs
 A Simple Code Generator
 Register Allocation and Assignment
 The DAG Representation of Basic Blocks
 Peephole Optimization
 Dynamic Programming Code-Generation Algorithm

05

08

9 Code Optimization
Global Data Flow Analysis,
A Few Selected Optimizations like Command Sub Expression

Removal, Loop Invariant Code Motion, Strength Reduction Etc.
 Optimization of basic blocks

07

11

10 Introduction to Language processors and system software
 Macros and Macro Processors:

Macro Definition and Call , Macro Expansion
 Assemblers: Elements of Assembly Language Programming,

A Simple Assembly Scheme ,Pass Structure of Assemblers,
Design of a Two Pass Assembler

 Software Tools for Program Development
 Editors
 System software: linker/loader

10

16

 Total

64

100

Instructional Method and Pedagogy:
 At the start of course, the course delivery pattern, prerequisite of the subject

will be discussed.
 Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
 Attendance is compulsory in lecture and laboratory which carries 10 marks in

overall evaluation.
 One internal exam will be conducted as a part of internal theory evaluation.
 Assignments based on the course content will be given to the students for each

unit and will be evaluated at regular interval evaluation.
 Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in

the overall internal evaluation.
 The course includes a laboratory, where students have an opportunity to

build an appreciation for the concepts being taught in lectures.
 Experiments shall be performed in the laboratory related to course contents.

STUDENTS LEARNING OUTCOMES:

On successful completion of the course, the student will:
 Understand how the design of a compiler requires most of the knowledge acquired

during their study.
 Develop a firm and enlightened grasp of concepts learned earlier in their study like

higher level programming, assemblers, automata theory, and formal languages.
 Apply the ideas, the techniques, and the knowledge acquired for the purpose of other

language processor design.
 Working skills in theory and application of finite state machines, recursive descent,

production rules, parsing, and language semantics.
 Know about the powerful compiler generation tools, which are useful to the other

non-compiler applications
 Be able to compare various system software related to the given system
 Be able to understand the concepts required to develop the system software

Reference Books:

1. Compilers, Principles, Techniques and Tools by A.V. Aho, R. Sethi and J.D.Ullman,
Pearson

2. D. M. Dhamdhere, “Systems Programming and Operating Systems”, Second Revised
Edition, Tata McGraw-Hill, 1999.

3. Advanced compiler Design Implementation by Steven S. Muchnick
4. The Compiler Design handbook: Optimization and Machine Code Generation by Y. N.

Shrikant and Priti Shankar, Second Edition
5. Charles N. Fischer, Richard J. leBlanc, Jr.- Crafting a Compiler with C, Pearson

Education, 2008.

List of Practical:

Sr.NO Practical

1
Implement a C program to identify keywords and identifiers using finite
automata.

2.
Implement a C program to identify whether the production is left recursive or
not and eliminate left recursion if it is applicable.

3. Implement a C program to remove left factoring.

4.

 Implementation of lex programs:
Write a lex program to identify numbers, words and other characters and
generate tokens for each.
Write a lex program to identify all occurrences of “LDRP” and replace it with
“COLLEGE”.
Write a lex program to display the length of each word.
 Write a lex program to convert the lowercase first letter of the string to
upper case and upercase first letter of the string to lowercase.

Write a lex program to count the number of characters, words and lines in the
given input.
Write a lex program to add line numbers to every line of a input file.

Write a lex program that read the numbers and add 3 to the numbers if the
number is divisible by 7.

Write a lex program to remove empty lines.
Write a lex program to identify words followed by punctuation marks.
Write a lex program to display the comments from given input file. \\|*
Write a lex program to identify all the lexemes from input file that follow the
given RE. Provide the RE and input file as command line arguments.
Write a lex program that will replace the word “Hello” with “ldrp” if the line
starts with the letter ‘a’ and with “college” if it starts with ‘b’.
Generate a lexer for C program.

5

Implementation of Yacc programs.
Write a Yacc program for desktop calculator with ambiguous grammar.
Write a Yacc program for desktop calculator with ambiguous grammar and
additional information.
Write a Yacc program for calculator with
unambiguous grammar.

 6 Implement pass-I of a two pass assembler

